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Abstract
We present a theory for describing the reaction process occurring in disordered
media with energetically disordered trapping sites and spatial constraints. The
theory is based on a generalized fractional reaction–diffusion equation, which
describes the time evolution of the mean distribution of a particle performing
a continuous time random walk on a fractal network. The motion of a particle
is subdiffusive because of the spatial constraints and/or the random detrapping
times described by a waiting time distribution given by ψ(t) ∼ t−(1+α) with
0 < α < 1. Assuming that the reaction occurs at a separation of contact, the
reaction and transport processes are decoupled and the kinetic information for
the reaction is expressed in terms of the reaction-free Green’s function obtained
with the reflecting boundary condition at the separation of contact. The survival
probability of a reactant pair is shown to decay asymptotically as τ−α|ds/2−1|,
where ds is the fracton dimension of the fractal network under consideration. We
also check the validity of the analytical results by comparison with Monte Carlo
simulation results.

1. Introduction

Kinetics of reactions occurring in disordered media, such as glasses, amorphous
semiconductors, lipid bilayers and living cells, often display anomalous behaviour and have
attracted much attention [1–3]. A main cause of the observed peculiarities in reaction kinetics
is the dispersive transport of reactant particles due either to spatial constraints on jump paths or
to the presence of energetically disordered trapping sites with diverging mean detrapping time
below some threshold temperature.
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The tool most widely used to describe the anomalous dynamics is the continuous time
random walk (CTRW) model [1, 4, 5]. In this model the random walker makes a jump
between lattice points after a certain waiting time that is chosen randomly from a distribution
function ψ(t). In the presence of energetic disorder, the waiting time distribution may behave
as ψ(t) ∼ t−(1+α) with 0 < α < 1 at long times [6]. Hence, the mean detrapping time diverges
and the mean squared displacement (MSD) increases sublinearly with time; 〈r 2(t)〉 ∼ tα . On
the other hand, spatially disordered media are frequently modelled by fractal lattices [1–3].
Due to the constraints on jump paths, particle transport on fractals becomes subdiffusive even
when the mean detrapping time at a lattice site is finite. The MSD is given by 〈r 2(t)〉 ∼ t2/dw

with the walk dimension dw larger than 2 in most cases [3, 7].
Most previous works dealing with subdiffusion-assisted reaction kinetics focused upon

either one of the two causes of subdiffusion. Reaction kinetics in fractal media have been
studied based on the random walk models [1, 3, 8] or by using a generalized diffusion equation
approach [9, 10]. Blumen et al used random walk models to study the trapping and target
problems as well as bimolecular cases, A + A → 0 and A + B → 0 [1, 8]. It was shown that
expressions for survival probability obtained for regular lattices in the Euclidean dimension d
could be used in analysing the computer simulation results obtained for fractal lattices with the
replacement of d by the fracton dimension ds. This idea was extended further in investigating
the reversible recombination reaction by the use of a generalized diffusion equation defined in
ds-dimensional space [10]. However, by using a scaling argument Sheu et al showed that for
the bimolecular A + B → 0 reaction, the asymptotic kinetic behaviour depends not only on ds

but also on the fractal dimension df [11].
The anomalous slowing down of reaction rates due to diverging mean residence time

of reactant molecules at lattice sites has been extensively investigated by using CTRW
approaches [1, 12]. Recently, however, alternative approaches based on the fractional diffusion
equation (FDE) have become increasingly popular [13, 14]. The FDE itself can be derived
from the CTRW model [13, 15], but the major advantage of FDE-based approaches is that the
solution of the FDE can be obtained by using similar mathematical techniques that have been
used for solving the standard diffusion equation. In addition, the influence of external fields
and the effects of excluded volumes of reactants can be incorporated in a more straightforward
manner. Yuste and Lindenberg used the FDE approach to investigate the dynamics of single-
species coagulation reactions in one dimension [16]. To take into account the excluded
volume effects on the geminate pair reaction and the pseudo-first-order target problem in
subdiffusive media, Sung et al introduced the delta-function reaction sink together with the
reflecting boundary at the separation of contact of reactants to construct the reaction–diffusion
equation [17]. Subsequently, Seki et al elaborated on the construction of a proper boundary
condition for use with the FDE [18, 19]. It was shown that the reaction term must include a
memory effect because the escape from a non-reactive encounter is delayed in conformity with
a waiting time distribution which can be related to that governing the subdiffusive motion in the
bulk. In a related work, Sung and Silbey considered the one-dimensional CTRW with arbitrary
reaction rate and waiting time distributions at the boundary, and obtained a formally exact
solution in the continuum limit without recourse to a reaction–diffusion equation [20]. Hence
their approach enables one to find an appropriate reaction term in the generalized reaction–
diffusion equation. Very recently, Shushin used another approach based on the non-Markovian
stochastic Liouville equation to tackle the problems involving long-range coordinate-dependent
reactivity [21].

In this work, we consider the kinetics of reactions in subdiffusive media involving
both spatial constraints and energetically disordered trapping sites. Blumen et al addressed
the pseudo-first-order A + B → 0 case for this general situation by using the CTRW
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approach [1, 22]. However, to include the detailed microscopic features of the reaction event,
such as the excluded volume effect and the distance-dependent reactivity, it is preferable to use
a generalized FDE approach. As an initial attempt along this line, we will study the reaction
kinetics of a geminate pair which performs CTRW on the fractal lattice.

In section 2, an appropriate form of the generalized reaction–diffusion equation is
established. In section 3, a Laplace-transform expression for the survival probability of the
reactant pair is obtained in terms of a reaction-free Green’s function. The effects of various
reaction parameters, such as the sink size and the initial separation of the geminate pair, and of
transport properties, such as the dimensional parameters of the fractal lattice and the waiting
time exponent α, can be predicted from the analytical expression of survival probability. In
particular, it is shown that the survival probability decays asymptotically as τ−α|ds/2−1|. In
section 4, the accuracy of the analytical results is checked against Monte Carlo simulation
results. The theoretical results are in good agreement with CTRW simulations on a Sierpinski
gasket. Section 5 concludes the present work.

2. Generalized reaction–diffusion equation

Let us first consider the subdiffusive motion of a particle performing CTRW on a fractal lattice
in the absence of a reaction. The probability density P(r, t) of the particle starting from the
origin and travelling a distance r in time t can be expressed in the Laplace domain as [3]

P̂(r, s) =
∞∑

n=0

Pn(r)ψ̂(s)
n[1 − ψ̂(s)]/s. (1)

Here, f̂ (s) denotes the Laplace transform of a function f (t). Pn(r) is the probability of being
at the distance r after n steps, and ψ(t) is the waiting time distribution at a lattice site. For
a fractal lattice, lacking translational invariance, Pn(r) must be averaged over all pairs of the
lattice sites separated by the distance r .

It is known that anomalous dynamic features associated with fractals can be incorporated
into an intrinsic metric, defined by the relation y = rβ/β with β = dw/2 = df/ds [23, 24].
In the intrinsic metric space, which we will simply call the y-space, many dynamic relations
for fractals reduce to the familiar forms known for regular lattices in Euclidean space. For
example, an approximate expression for Pn(r) is given in y-space as

Pn(y) = 1

(4πDspn)ds/2
exp

(
− y2

4Dspn

)
, (2)

where Dsp is the diffusion coefficient defined in terms of the step number n rather than time.
As can be noted in equation (2), the fracton dimension ds plays the role of the mass scaling
exponent in y-space. Although equation (2) deviates from the universal asymptotic scaling
behaviour Pn(y) ∼ n−ds/2 exp[−c(y2/n)1/(dw−1)] for n � (r/b)dw , where c is a constant and
b is the lattice spacing, it becomes accurate for large n compared to (r/b)dw [25, 26]. Since
we are interested in intermediate to long time events, we will adopt the simpler expression for
Pn(y) in equation (2).

Applying the fractional radial Fourier transformation [27],

f̃ (k) = (2π)ds/2k1−ds/2
∫ ∞

0
dyyds/2 Jds/2−1(ky) f (y), (3)

where Jν(x) is the νth-order Bessel function of the first kind, equation (1) becomes

ˆ̃P(k, s) = 1 − ψ̂(s)

s[1 − ψ̂(s)e−Dspk2 ] . (4)

3
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Taking the diffusion approximation (small k) and carrying out the inverse fractional radial
Fourier transformation, we obtain the time-nonlocal generalized diffusion equation in
y-space as

s P̂(y, s)− δ(y)

γds yds−1
= sψ̂(s)

1 − ψ̂(s)
DspLds(y)P̂(y, s), (5)

where γds is the metric factor given by γds = 2πds/2/
(ds/2) and Lds(y) is the generalized
radial Laplacian in y-space,

Lds(y) = y1−ds(∂/∂y)yds−1(∂/∂y). (6)

In r -space, Lds is just the generalized diffusion operator proposed by O’Shaughnessy and
Procaccia [28],

DOP(r) = r 1−df(∂/∂r)(rdf−1/rdw−2)(∂/∂r). (7)

Now we consider the irreversible reaction between a geminate pair of reactant molecules.
For simplicity, we assume that one of the reactants, say A, is immobile and located at the
origin. The other reactant, say B, is initially located at a distance r0, and subsequently performs
a CTRW on the lattice embedded in d-dimensional Euclidean space. The reaction then occurs
at a distance σ smaller than r0. More precisely, we consider a reaction zone which is defined as
the d-dimensional spherical shell with the inner and outer radii given by σ − 1

2 b and σ + 1
2 b,

respectively. When B arrives in this reaction zone, it either reacts or escapes from the zone in
the outward direction. It is not allowed to penetrate inside the reaction zone.

Let φσ (t) and ψnr
σ (t) be the reaction and the escape time distributions at the reaction

zone, respectively, which are normalized as
∫∞

0 dt ′ [φσ (t ′) + ψnr
σ (t

′)] = 1. In terms of these
distribution functions, we can obtain a formal expression for the probability that B has not
undergone reaction until time t . The time dependence of this survival probability, denoted as
S(t|r0), can be expressed in the Laplace domain as [20]

ˆ̇S(s|r0) = −φ̂σ (s)
{ ∞∑

m=0

[ĥσ (s|σ + b)ψ̂nr
σ (s)]m

}
ĥσ (s|r0)

= − φ̂σ (s)ĥσ (s|r0)

1 − ψ̂nr
σ (s)ĥσ (s|σ + b)

(r0 	= σ), (8)

where ˆ̇S(s|r0) denotes the Laplace transform of ∂S(t|r0)/∂ t . hσ (t|r0) dt is the probability that
B arrives at σ for the first time between times t and t + dt , given that it was initially at r0.
Note that the mth term in the first line of equation (8), {−φ̂σ (s)[ĥσ (s|σ +b)ψ̂nr

σ (s)]mĥσ (s|r0)},
represents the contribution from the reaction event at the (m +1)th visit to the reaction zone.
The position σ + b represents the lattice sites off the reaction zone which can be reached at a
single jump from the reaction zone.

The first passage time distribution hσ (t|r0) is related to the probability G∗
σ (t|r0) that B is

found at σ at time t in the absence of reaction given that it was initially located at r0,

Ĝ∗
σ (s|r0) = 1 − ψ̂∗

σ (s)

s
δσ r0 + Ĝ∗

σ (s|σ)ĥσ (s|r0). (9)

Here, ψ∗
σ (t) dt is the probability that B escapes from the reaction zone between times t and

t + dt after the arrival at the reaction zone at time 0 in the absence of reaction. We will later
discuss the relation between ψ∗

σ (t) and ψnr
σ (t). When r0 	= σ , we have

4
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Ĝ∗
σ (s|r0) = 1 − ψ̂∗

σ (s)

s

{ ∞∑

m=0

[ĥσ (s|σ + b)ψ̂∗
σ (s)]m

}
ĥσ (s|r0)

= 1 − ψ̂∗
σ (s)

s
· ĥσ (s|r0)

1 − ĥσ (s|σ + b)ψ̂∗
σ (s)

(r0 	= σ). (10)

Similarly, we have

Ĝ∗
σ (s|σ) = 1 − ψ̂∗

σ (s)

s

{ ∞∑

m=0

[ĥσ (s|σ + b)ψ̂∗
σ (s)]m

}

= 1 − ψ̂∗
σ (s)

s
· 1

1 − ĥσ (s|σ + b)ψ̂∗
σ (s)

= 1 − ψ̂∗
σ (s)

s
+ ψ̂∗

σ (s)Ĝ
∗
σ (s|σ + b).

(11)

From equations (9)–(11), ĥσ (s|r0) can be rewritten as

ĥσ (s|r0) = Ĝ∗
σ (s|r0)

s−1[1 − ψ̂∗
σ (s)] + ψ̂∗

σ (s)Ĝ
∗
σ (s|σ + b)

(r0 	= σ). (12)

Note that ĥσ (s|r0) is independent of the boundary condition.
Substituting equation (12) into (8) we can show that

Ŝ(s|r0) = 1

s

[
1 − F̂(s, r0)

1 + F̂(s, σ + b)

]
, (13)

where F̂(s, r0) is given by

F̂(s, r0) = φ̂σ (s)Ĝ∗
σ (s|r0)

s−1[1 − ψ̂∗
σ (s)] + [ψ̂∗

σ (s)− ψ̂σ (s)]Ĝ∗
σ (s|σ + b)

(14)

with

ψ̂σ (s) = φ̂σ (s)+ ψ̂nr
σ (s). (15)

Equations (13)–(15) generalize the results of reference [20] obtained for one-dimensional
CTRW reaction dynamics to the case of arbitrary fractal dimension. In the long time limit
(s → 0), the second term in the denominator of F̂(s, r0) in equation (14), which results from
the coupling between transport and reaction at the boundary, becomes negligible compared to
the first term. On the other hand, in the continuum limit (b → 0), Ĝ∗

σ (s|r0) should be replaced
with (γdfσ

df−1b)Ĝ∗(σ, s|r0), where γdf = 2πdf/2/
(df/2) and Ĝ∗(σ, s|r0) is the reaction-free
Green’s function which satisfies the time-nonlocal generalized diffusion equation in (5),

sĜ∗(r, s|r0)− δ(r − r0)

γdfr
df−1
0

= s ψ̂(s)

1 − ψ̂(s)
DspDOP(r)Ĝ

∗(r, s|r0). (16)

Ĝ∗(σ, s|r0) satisfies the boundary conditions ∂G∗(r, t|r0)/∂r |r=σ = 0 and limr→∞ G∗(r, t|r0)

= 0.
Finally, we can show that the generalized reaction–diffusion equation which is consistent

with the survival probability expression in equation (13) is given by

sĜ(r, s|r0)− G(r, 0|r0) = s ψ̂(s)

1 − ψ̂(s)
DspDOP(r)Ĝ(r, s|r0)− sφ̂σ (s)

1 − ψ̂∗
σ (s)

bδ(r − σ)Ĝ(r, s|r0),

(17)

with G(r, t|r0) denoting the full Green’s function for reaction–diffusion.

5
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To go further, we need an explicit expression for ψ(t), the waiting time distribution at the
lattice sites off the boundary of the reaction zone. An interesting model for dispersive transport,
which leads to a power-law waiting time distribution, was presented by Jakobs and Kehr [6].
According to their model, the release of B from a lattice site is assumed to be an activated
process, and thus the release rate is given by

γr (E) = γh exp(−E/kBT ), (18)

where E is the energy barrier at a given site, kB is the Boltzmann constant and T is the absolute
temperature. It is then assumed that the energy barrier distribution f (E) has the form,

f (E) = 1

kBTc
exp(−E/kBTc), (19)

with kBTc being a characteristic energy defining the distribution. Hence, the probability that B
is released from the site at time t is given by

ψ(t) =
∫ ∞

0
dE f (E)γr (E) exp[−γr(E)t] = αγh

γ (1 + α, γh t)

(γht)1+α , (20)

where α = T/Tc and γ is the incomplete gamma function γ (a, z) = ∫ z
0 dp e−p pa−1 [29]. The

waiting time distribution function ψ(t) is normalized [∫∞
0 dt ψ(t) = 1], and for γht � 1 it

becomes [30].

ψ(t) ∼= αγh

(1 + α)

(γht)1+α , (21)

where 
(z) is the gamma function [29]. The Laplace transform of ψ(t) is given in terms of the
hypergeometric function, and its large and small s-limits are [19]

ψ̂(s) = 1 − 2 F1[1, α, α + 1,−γh/s] ∼

⎧
⎪⎪⎨

⎪⎪⎩

1 − πα

sinπα

(
s

γh

)α
for

s

γh
� 1,

α

α + 1
· γh

s
for

s

γh
� 1.

(22)

The distribution ψ∗
σ (t) of escape times from the reaction zone in the absence of reaction can be

related to ψ(t) as follows. We suppose that the waiting time distribution at a site in the reaction
zone is also given by ψ(t), but the probability that the jump at the reaction zone occurs in the
outward direction (therefore leading to escape) is p, which is less than unity. Since B cannot
penetrate inside σ , it should remain at the boundary after an unsuccessful jump until the next
trial. Therefore we can write

ψ̂∗
σ (s) = pψ̂(s)

[
1 + (1 − p)ψ̂(s)+ (1 − p)ψ̂(s)(1 − p)ψ̂(s)+ · · ·

]
= pψ̂(s)

1 − (1 − p)ψ̂(s)
.

(23)

We then have to introduce an appropriate reaction model. For simplicity, we assume that
the reaction process is a Poisson process so that the reaction time distribution is given by

φ∗
σ (t) = γr e−γr t , (24)

where γr is the first-order rate constant for reaction at the reaction zone. Note that φ∗
σ (t) dt is

the probability that the reaction takes place between times t and t + dt in the absence of any
jumps leading to the escape from the reaction zone.

The reaction and escape time distributions, φσ (t) and ψnr
σ (t), introduced earlier, are

the working distributions in the presence of coupling between the CTRW and reaction.
These are related to φ∗

σ (t) and ψ∗
σ (t) as φσ (t) = φ∗

σ (t)
∫∞

t dτψ∗
σ (τ ) and ψnr

σ (t) =
6
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ψ∗
σ (t)

∫∞
t dτφ∗

σ (τ ) [20], and are normalized as
∫∞

0 dτ [φσ (τ )+ψnr
σ (τ )] = 1. For the Poisson

reaction process, for which φ∗
σ (t) is given by equation (24), we have

ψ̂nr
σ (s) = ψ̂∗

σ (s + γr ) (25)

φ̂σ (s) = γr

s + γr
[1 − ψ̂∗

σ (s + γr )]. (26)

Substituting the small s-limit expressions for ψ̂(s), ψ̂∗
σ (s), and φ̂σ (s) into equation (17)

and then taking the inverse Laplace transformation of the resulting equation, we can obtain the
following reaction–diffusion equation that is valid for the intermediate to long time regime,
∂G(r, t|r0)

∂ t
= 0 D1−α

t

[
Dα f DOP(r)G(r, t|r0)− κα f

δ(r − σ)

γdfσ
df−1

G(r, t|r0)

]
. (27)

Here, 0 D1−α
t is the fractional differential operator defined by

0 D1−α
t f (t) = 1


(α)

∂

∂ t

∫ t

0
dτ

f (τ )

(t − τ )1−α for 0 < α < 1, (28)

and the generalized diffusion coefficient Dα f is given by

Dα f = sinπα

πα
γ αh Dsp. (29)

In this expression for Dα f the characteristics of the waiting time distribution are carried by the
factor (sinπα/πα)γ αh , while the feature of spatial constraints associated with the fractal lattice
is represented by Dsp. For a regular lattice in d-dimensional space, Dsp = b2/2d . For the
Sierpinski gasket embedded in d-dimensional space, Dsp is given by [28]

Dsp = bdw

(d + 1)df(dw − df)
. (30)

In equation (27), the intrinsic rate coefficient κα f is given by

κα f = γdfσ
df−1 sinπα

πα
γ αh pbφ̂σ (0). (31)

φ̂σ (0) is the cumulative probability that a B molecule undergoes reaction after arrival at the
reaction zone rather than escaping from it. Limiting expressions for φ̂σ (0) can be obtained
from equations (22), (23), and (26):

φ̂σ (0) ∼

⎧
⎪⎪⎨

⎪⎪⎩

πα

p sinπα

(
γr

γh

)α
for

γr

γh
� 1,

1 − p α

(1 + α)

γh

γr
for

γr

γh
� 1.

(32)

In order for the reaction–diffusion equation in (27) to produce results that are consistent
with simulation results for CTRW on a fractal lattice with finite lattice spacing b0, the
generalized diffusion coefficient Dα f , given by equations (29) and (30), must have an invariant
value in taking the continuum limit (b → 0). Since Dsp ∝ bdw, this requires γh to scale
as γh = γ 0

h (b0/b)dw/α , where γ 0
h is the parameter used for the CTRW simulation. For the

Sierpinski gasket, we thus have

Dα f = sinπα

πα

(γ 0
h )
αbdw

0

(d + 1)df(dw − df)
. (33)

Then, equations (31) and (32) show that in the limit when γr � γh , κα f ∝ b1−dw → ∞ as
b → 0. This situation corresponds to the case where the absorbing boundary condition has to
be applied in modelling the reaction event. On the other hand, when γr � γh , κα f can be kept
finite with γr scaled as γr = γ 0

r (b0/b)1/α, where γ 0
r is the reaction frequency parameter used

in the simulation. In this latter case, we have

κα f = γdfσ
df−1b0(γ

0
r )
α. (34)

7
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3. Green’s function and survival probability

A key kinetic observable of interest is the survival probability, S(t|r0) = ∫
dV G(r, t|r0). From

equation (27), we can obtain the following expression for the survival probability in the Laplace
domain,

Ŝ(s|r0) = 1

s
− κα f s1−αĜ∗(σ, s|r0)

s[1 + κα f s1−αĜ∗(σ, s|σ)] . (35)

The Laplace-transformed expression for the reaction-free Green’s function, Ĝ∗(r, s|r0), can be
obtained by solving the equation,

[s − s1−αDα f DOP(r)] Ĝ∗(r, s|r0) = δ(r − r0)/γdfr
df−1
0 , (36)

which is derived from equation (16) with (22) in the small-s limit. By changing the variable as
y = rβ/β and using the relation δ[h(q)] = ∑

i δ(q − qi)/|h′(qi)|, with qi being the root of
h(q), we obtain

Ĝ∗(x, z|x0) = 1

kD

zα−1 Kν(zα/2xβ)Kν(zα/2xβ0 )

(xx0)βν

[
Iν(zα/2xβ<)

Kν(zα/2xβ<)
+ Iν+1(zα/2)

Kν+1(zα/2)

]
, (37)

where x = r/σ , x0 = r0/σ and z = stD with tD = (σ 2β/Dα f β
2)1/α . kD = γdfσ

df/tDβ and it
reduces to the well known Smoluchowski expression for the diffusion-controlled rate constant
in the case of ordinary diffusion on regular lattices. Iν(q) and Kν(q) with ν = ds/2 − 1
are modified Bessel functions of the first and the second kind, respectively [29], and x< =
min(x, x0).

From equations (35) and (37), we obtain an expression for the survival probability in the
reduced length and timescales as

Ŝ(z|x0) = 1

z
− kF Ĝ(1, zα|x0)

z[1 + kF Ĝ(1, zα|1)] , (38)

where Ĝ(x, zα|x0) is the Laplace transform of the reduced reaction-free Green’s function
γ−1

df
kD Ĝ∗(x, z|x0). We note that Ĝ(x, z|x0) satisfies the fractal diffusion equation

[z − β−2DOP(x)]Ĝ(x, z|x0) = β−1δ(x − x0)/γdf x
df−1
0 . (39)

Therefore, the dynamic influence of temporal disorder in waiting times characterized by ψ(t)
can be counted just by replacing z with zα in Ĝ(x, z|x0). kF is a reduced intrinsic rate
coefficient defined as kF = γdfκα f /kDt1−α

D . From equations (33) and (34), we have

kF = γdf(d + 1)df(dw − df)

β

(
σ

b0

)dw−1
πα

sinπα

(
γ 0

r

γ 0
h

)α
. (40)

From equations (37) and (38) with the use of the recurrence relation for the Bessel
functions, Kν(q) = (q/2ν)[Kν+1(q) − Kν−1(q)], we can obtain the asymptotic expression
for the survival probability in the time domain as

S(τ |x0)
∼=
[

1 − 1

x2βν
0 (1 + 2ν/kF )

][
1 + 
(1 − ν)


(1 + ν)
(1 − αν)

(
1

1 + 2ν/kF

)(
1

4τα

)ν]

(2 < ds < 4) (41)

S(τ |x0)
∼=
(

2

kF
+ 2 ln xβ0

) {
1

ln(4τα)− 2γ + 2/kF
− αγ

[ln(4τα)− 2γ + 2/kF ]2

}

(ds = 2) (42)

S(τ |x0)
∼=
[

1

kF
+ 1

2ν

(
1 − 1

x2βν
0

)]
2
(1 + ν)


(|ν|)
(1 + αν)

(
1

4τα

)|ν|
(0 < ds < 2). (43)
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Here τ = t/tD , kF = kF/γdf , and γ = 0.577 215 66 · · · is the Euler–Mascheroni constant. For
the case with regular lattices in three dimensions, df = ds = 3, β = df/ds = 1 and ν = 1/2.
Hence equation (41) reduces to equation (5.4) of [19]. On the other hand, for the case of the
simple random walk on fractal lattices, α = 1 and equations (41)–(43) with x0 = 1 reduce to
equations (7) and (8) of [10].

We see that the survival probability S(τ |x0) decays as ∼1/τα|ds/2−1| at long times except
for the case with ds = 2. Seki et al [19] showed that for the case with regular lattices in three
dimensions S(τ |x0) decays as ∼1/τα/2, while Sung et al [10] showed that for the case of the
simple random walk on fractal lattices it decays as ∼1/τ |ds/2−1|. Hence, the asymptotic power-
law decay of S(τ |x0) as ∼1/τα|ds/2−1| could have been inferred from the assumption that the
temporal constraint due to energetic disorder and the spatial constraint are uncorrelated.

4. Comparison with computer simulation results

In this section we examine the range of applicability of the present theoretical results by
comparison with the Monte Carlo (MC) simulation results. We have simulated the CTRW and
reaction dynamics occurring on the Sierpinski gasket embedded in two-dimensional Euclidean
space, for which df = (ln 3)/(ln 2) = 1.58, dw = (ln 5)/(ln 2) = 2.32 and ds = 2df/dw =
1.36.

4.1. Validity of the generalized FDE in equation (36)

We will first check the validity of the proposed FDE in the absence of reaction. By taking the
limit of equation (37) as r0 → 0, we can obtain the time-domain expression for the particle
displacement distribution function as

G∗(r, t|0) = β

γd f
(ds/2)rdf
H 2 0

1 2

(
rβ

2β

1√
Dα f tα

∣∣∣∣
(1, 1/2)
(ds/2, 1/2) (1, 1/2)

)
, (44)

where H m n
p q is the Fox H -function defined as the Mellin–Barnes type path integral [31]

H m n
p q

(
z

∣∣∣∣
(ap, A p)

(bq, Bq)

)
= H m n

p q

(
z

∣∣∣∣
(a1, A1), (a2, A2), . . . , (ap, A p)

(b1, B1), (b2, B2), . . . , (bq, Bq)

)
= 1

2π i

∫

L
dsχ(s)zs

with the integral density

χ(s) =
∏m

1 
(b j − B j s)
∏n

1 
(1 − a j + A j s)∏q
m+1 
(1 − b j + B j s)

∏p
n+1 
(a j − A j s)

.

The expression for the mean squared displacement (MSD) can be obtained as

〈r 2(t)〉 =
∫ ∞

0
drγd f r df−1r 2G∗(r, t|0)

= 
((ds/2)+ (1/β))
(1 + (1/β))


(ds/2)
(1 + (α/β))

(
4β2 Dα f

)1/β
tα/β . (45)

We compare the predictions of equations (44) and (45) with the MC simulation results for
a particle performing a CTRW on the Sierpinski gasket. For each MC trajectory the initial
position is chosen randomly. To generate the waiting times in conformity with the distribution
in equation (20), we first generate the trap energy E according to the exponential distribution
in equation (19) with kBTc = 10. For this randomly chosen energy barrier, the value of the
release rate γr (E) is calculated from equation (18) with kBT = αkBTc; we carry out two sets
of simulations with α = 0.5 and 0.7. The waiting time is then obtained by multiplying 1/γr (E)
to an exponentially distributed, positive, random deviate of unit mean [32].

9
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Figure 1. The mean squared displacement 〈x̄2〉 as a function of time τ̄ on a Sierpinski gasket.

Figure 2. Particle distributions G∗(x̄, τ̄ |0)γdf x̄df−1 for CTRW on a Sierpinski gasket. The waiting
time distribution exponent α is set to 0.7.

For the CTRW on the Sierpinski gasket, the particle may jump to any one of the four
nearest neighbouring sites with equal probability of 1/4. After landing on a site at time
t , the waiting time �t at the site is generated as described above, and upon moving to the
neighbouring site time advances to t +�t . To avoid the system size effect, we use a very large
lattice whose side length is 222b0. By comparing the simulation results with those obtained for
the lattice with side length of 221b0, we have checked that the size effect is absent.

In figure 1, MC simulation results for MSD are compared with the analytical results from
equation (45). We use the following reduced variables: x̄ = r/b0 and τ̄ = t/(b2β

0 /Dα f β
2)1/α.

The solid lines represent the analytical results, while the dotted curves are the simulation results
obtained from 20 000 trajectories. The upper curves are for the case with α = 0.7, while the
lower curves are for the case with α = 0.5. It is seen that the analytical results are in good
agreement with simulations for τ̄ > 3. Since the generalized diffusion coefficient Dα f is
determined from equation (33) without any adjustable variables, the agreement between the
MC simulations and equation (45) requires the correctness of the amplitude factor as well as
the time exponent.

In figure 2, MC simulation results for particle distribution G∗(x̄, τ̄ |0 )γdf x̄
df−1 calculated

from 70 000 trajectories are compared with the results obtained from the analytical expression
in equation (44). The Fox H -function is evaluated by using the series expression [33],

10
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Figure 3. Comparison of the survival probability curves calculated from the theory and MC
simulations for the geminate pair reaction on a Sierpinski gasket. The CTRW parameter α is varied
as marked on the figure with σ = b0, r0 = 4b0 and γ 0

r /γ
0
h = 1.

H m n
p q (z) =

m∑

h=1

∞∑

ν=0

[
�m

j=1, j 	=h
(b j − B j(bh + ν)/Bh)

�
q
j=m+1
(1 − b j + B j(bh + ν)/Bh)

× �n
j=1
(1 − a j + A j(bh + ν)/Bh)

�
p
j=n+1
(a j − A j(bh + ν)/Bh)

(−1)νz(bh+ν)/Bh

ν!Bh

]
. (46)

The plots are given for several values of τ̄ with α = 0.7. The agreements between theory and
simulations are excellent.

4.2. CTRW and reaction dynamics on a Sierpinski gasket

To avoid the artefactual effects due to finite system size, we use a very large lattice whose
side length is 222b0. To get the survival probability S(τ |x0) that is appropriately averaged
over the initial configurations, the centre of the reaction sink (the position of fixed particle A)
is randomly chosen for each trajectory and then the starting position of the random walker
(particle B) is randomly chosen among the lattice sites located between the circles of radius
(r0 − 1

2 b0) and (r0 + 1
2 b0), concentric with the sink.

The particle B moves around the lattice sites until it reacts with A. When B falls into
the reaction zone with σ − 1

2 b0 < r < σ + 1
2 b0, the time at which reaction or escape from

the reaction zone will occur is calculated as follows. We first generate the detrapping time tn
and the reaction time tr from ψ(t) in equation (20) and φ∗

σ (t) in equation (24), respectively.
When tr < tn , we take that the reaction occurs at time tr after the arrival at the reaction zone.
The trajectory is terminated and the total time of survival is recorded. On the other hand, if
tn < tr , B makes a jump to a randomly selected nearest neighbouring site and time advances
by tn . However, if B has attempted to jump to a site inside the inner reaction zone boundary
(σ − 1

2 b0), the movement is withdrawn although time has advanced by tn . We take B to just
arrive at the same site in the reaction zone where it has been trapped.

In figures 3–6, we compare the simulation results against theory. In figure 3, we vary the
CTRW parameter α with σ = b0, r0 = 4b0 and γ 0

r /γ
0
h = 1. In figure 4, we vary the reaction

radius σ with α = 0.7, r0 = σ + 3b0 and γ 0
r /γ

0
h = 1. In figure 5, we vary the initial location

r0 of B with α = 0.7, σ = b0 and γ 0
r /γ

0
h = 1. In figure 6, we vary the inherent reaction rate

parameter γ 0
r /γ

0
h with α = 0.7, σ = b0 and r0 = 4b0. Note that the simulation timescale is set

11
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Figure 4. Comparison of the survival probability curves calculated from the theory and MC
simulations for the geminate pair reaction on a Sierpinski gasket. The reaction radius σ is varied as
marked on the figure with α = 0.7, r0 = σ + 3b0 and γ 0

r /γ
0
h = 1.

Figure 5. Comparison of the survival probability curves calculated from the theory and MC
simulations for the geminate pair reaction on a Sierpinski gasket. The initial location r0 of B is
varied as marked on the figure with α = 0.7, σ = b0 and γ 0

r /γ
0
h = 1.

by the inverse of the jump frequency parameter γ 0
h . Hence the actual value of γ 0

h is immaterial
as long as the data are represented by the reduced variables, x0 and τ .

For each set of simulation parameters, at least 40 000 trajectories have been generated
to calculate the time-dependent survival probability S(τ |x0). The simulation results are
plotted as open circles and compared with the theoretical results (solid curves) calculated from
equations (37) and (38) by numerical inverse Laplace transformation. The generalized diffusion
coefficient Dα f can be calculated from equation (33), and the intrinsic rate coefficient κα f is
given by equation (34). There are no adjustable parameters involved in the calculation.

Figures 3–6 show that the theoretical results are in good agreement with the simulation
results. However, some deviations are noticeable. The reaction–diffusion equation in
equation (27) involves coarse-graining of the detailed structure of fractal lattices. Hence it
may not give an accurate description of reaction dynamics occurring at short distances. Indeed,
when the initial location of B is too close to the reaction radius σ , we observe a slight deviation
of the theoretical result from simulation (see figure 5). Also, when the inherent reactivity is

12
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Figure 6. Comparison of the survival probability curves calculated from the theory and MC
simulations for the geminate pair reaction on a Sierpinski gasket. The inherent reaction rate
parameter γ 0

r /γ
0
h is varied as marked on the figure with α = 0.7, σ = b0 and r0 = 4b0.

small (that is, for small values of γ 0
r /γ

0
h ), the B particle can visit the reaction zone repeatedly

before undergoing reaction and thus a more accurate description of reaction dynamics at short
distances is required. Figure 6 shows that the theory deviates a little from simulation for small
values of γ 0

r /γ
0
h . Although we have not presented the results for the case with γ 0

r /γ
0
h > 1,

both theoretical and simulation results converge to a single curve for γ 0
r /γ

0
h > 10. The curve

presented in figure 6 for the case with γ 0
r /γ

0
h = 1 is already very close to the limiting curve.

5. Concluding remarks

In this work we presented a generalized fractional reaction–diffusion equation to describe the
non-classical kinetics of reactions occurring in disordered media, which involve dual origins of
subdiffusive transport, that is, energetically disordered trapping sites and spatial constraints on
the jump paths. In deriving the reaction–diffusion equation, we considered the reaction model
in which reactant particles perform CTRW on fractal lattices and react with each other at the
separation of contact.

As an application of the proposed reaction–diffusion equation, we considered the reaction
between a geminate pair. We obtained an exact analytical expression for the survival probability
of the reactant pair in the Laplace domain. The survival probability depends on various reaction
and transport parameters. In particular, it was shown that the survival probability decays
asymptotically as ∼1/τα|ds/2−1| with α and ds denoting the waiting time exponent for CTRW
and the fracton dimension of the fractal lattice, respectively.

We also carried out Monte Carlo simulations to evaluate the accuracy of the theoretical
results. For the geminate reaction occurring on the Sierpinski gasket, the analytical results are
in good agreement with simulation results, indicating that both transport and reaction events
are properly modelled by the proposed reaction–diffusion equation.
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